• Konsman, J. P., Parnet, P. & Dantzer, R. Cytokine-induced sickness behaviour: mechanisms and implications. Trends Neurosci. 25, 154–159 (2002).

    CAS 
    Article 

    Google Scholar
     

  • McCusker, R. H. & Kelley, K. W. Immune–neural connections: how the immune system’s response to infectious agents influences behavior. J. Exp. Biol. 216, 84–98 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Evans, S. S., Repasky, E. A. & Fisher, D. T. Fever and the thermal regulation of immunity: the immune system feels the heat. Nat. Rev. Immunol. 15, 335–349 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Quan, N. & Banks, W. A. Brain–immune communication pathways. Brain Behav. Immun. 21, 727–735 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Nakamori, T. et al. Organum vasculosum laminae terminalis (OVLT) is a brain site to produce interleukin-1β during fever. Brain Res. 618, 155–159 (1993).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Tan, C. L. et al. Warm-sensitive neurons that control body temperature. Cell 167, 47–59.e15 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, Y. et al. Leptin-receptor-expressing neurons in the dorsomedial hypothalamus and median preoptic area regulate sympathetic brown adipose tissue circuits. J. Neurosci. 31, 1873–1884 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Zhao, Z. D. et al. A hypothalamic circuit that controls body temperature. Proc. Natl Acad. Sci. USA 114, 2042–2047 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Elmquist, J. K., Scammell, T. E., Jacobson, C. D. & Saper, C. B. Distribution of Fos-like immunoreactivity in the rat brain following intravenous lipopolysaccharide administration. J. Comp. Neurol. 371, 85–103 (1996).

    CAS 
    Article 

    Google Scholar
     

  • Oka, T. et al. Relationship of EP1-4 prostaglandin receptors with rat hypothalamic cell groups involved in lipopolysaccharide fever responses. J. Comp. Neurol. 428, 20–32 (2000).

    CAS 
    Article 

    Google Scholar
     

  • Lazarus, M. et al. EP3 prostaglandin receptors in the median preoptic nucleus are critical for fever responses. Nat. Neurosci. 10, 1131–1133 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Machado, N. L. S., Bandaru, S. S., Abbott, S. B. G. & Saper, C. B. EP3R-expressing glutamatergic preoptic neurons mediate inflammatory fever. J. Neurosci. 40, 2573–2588 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Moffitt, J. R. et al. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science 362, eaau5324 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).

    Article 

    Google Scholar
     

  • Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Konsman, J. P., Tridon, V. & Dantzer, R. Diffusion and action of intracerebroventricularly injected interleukin-1 in the CNS. Neuroscience 101, 957–967 (2000).

    CAS 
    Article 

    Google Scholar
     

  • Kis, B. et al. Effects of LPS stimulation on the expression of prostaglandin carriers in the cells of the blood–brain and blood–cerebrospinal fluid barriers. J. Appl. Physiol. 100, 1392–1399 (2006).

    CAS 
    Article 

    Google Scholar
     

  • Zywitza, V., Misios, A., Bunatyan, L., Willnow, T. E. & Rajewsky, N. Single-cell transcriptomics characterizes cell types in the subventricular zone and uncovers molecular defects impairing adult neurogenesis. Cell Rep. 25, 2457–2469.e8 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Roessmann, U., Velasco, M. E., Sindely, S. D. & Gambetti, P. Glial fibrillary acidic protein (GFAP) in ependymal cells during development. An immunocytochemical study. Brain Res. 200, 13–21 (1980).

    CAS 
    Article 

    Google Scholar
     

  • Duan, L. et al. PDGFRβ cells rapidly relay inflammatory signal from the circulatory system to neurons via chemokine CCL2. Neuron 100, 183–200.e8 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Quan, N., Stern, E. L., Whiteside, M. B. & Herkenham, M. Induction of pro-inflammatory cytokine mRNAs in the brain after peripheral injection of subseptic doses of lipopolysaccharide in the rat. J. Neuroimmunol. 93, 72–80 (1999).

    CAS 
    Article 

    Google Scholar
     

  • Wilhelms, D. B. et al. Deletion of prostaglandin E2 synthesizing enzymes in brain endothelial cells attenuates inflammatory fever. J. Neurosci. 34, 11684–11690 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Hojen, J. F. et al. IL-1R3 blockade broadly attenuates the functions of six members of the IL-1 family, revealing their contribution to models of disease. Nat. Immunol. 20, 1138–1149 (2019).

    Article 

    Google Scholar
     

  • Davis, C. J. et al. The neuron-specific interleukin-1 receptor accessory protein is required for homeostatic sleep and sleep responses to influenza viral challenge in mice. Brain Behav. Immun. 47, 35–43 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Liege, S., Laye, S., Li, K. S., Moze, E. & Neveu, P. J. Interleukin 1 receptor accessory protein (IL-1RAcP) is necessary for centrally mediated neuroendocrine and immune responses to IL-1β. J. Neuroimmunol. 110, 134–139 (2000).

    CAS 
    Article 

    Google Scholar
     

  • Allen, W. E. et al. Thirst-associated preoptic neurons encode an aversive motivational drive. Science 357, 1149–1155 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • DeNardo, L. A. et al. Temporal evolution of cortical ensembles promoting remote memory retrieval. Nat. Neurosci. 22, 460–469 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Molina-Holgado, E., Ortiz, S., Molina-Holgado, F. & Guaza, C. Induction of COX-2 and PGE2 biosynthesis by IL-1β is mediated by PKC and mitogen-activated protein kinases in murine astrocytes. Br. J. Pharmacol. 131, 152–159 (2000).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Wu, Z., Autry, A. E., Bergan, J. F., Watabe-Uchida, M. & Dulac, C. G. Galanin neurons in the medial preoptic area govern parental behaviour. Nature 509, 325–330 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Kozak, W., Conn, C. A. & Kluger, M. J. Lipopolysaccharide induces fever and depresses locomotor activity in unrestrained mice. Am. J. Physiol. 266, R125–R135 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • Akins, C., Thiessen, D. & Cocke, R. Lipopolysaccharide increases ambient temperature preference in C57BL/6J adult mice. Physiol. Behav. 50, 461–463 (1991).

    CAS 
    Article 

    Google Scholar
     

  • Liu, Y. et al. Lipopolysacharide rapidly and completely suppresses AgRP neuron-mediated food intake in male mice. Endocrinology 157, 2380–2392 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Yizhar, O. et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477, 171–178 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Andermann, M. L. & Lowell, B. B. Toward a wiring diagram understanding of appetite control. Neuron 95, 757–778 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Pinol, R. A. et al. Brs3 neurons in the mouse dorsomedial hypothalamus regulate body temperature, energy expenditure, and heart rate, but not food intake. Nat. Neurosci. 21, 1530–1540 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Farzi, A. et al. Arcuate nucleus and lateral hypothalamic CART neurons in the mouse brain exert opposing effects on energy expenditure. eLife 7, e36494 (2018).

    Article 

    Google Scholar
     

  • Millington, G. W. The role of proopiomelanocortin (POMC) neurones in feeding behaviour. Nutr. Metab. 4, 18 (2007).

    Article 

    Google Scholar
     

  • Kapoor, V., Provost, A. C., Agarwal, P. & Murthy, V. N. Activation of raphe nuclei triggers rapid and distinct effects on parallel olfactory bulb output channels. Nat. Neurosci. 19, 271–282 (2016).

    CAS 
    Article 

    Google Scholar
     



  • Source link