• Schrittwieser, J. H., Velikogne, S., Hall, M. & Kroutil, W. Artificial biocatalytic linear cascades for preparation of organic molecules. Chem. Rev. 118, 270–348 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Huffman, M. A. et al. Design of an in vitro biocatalytic cascade for the manufacture of islatravir. Science 366, 1255–1259 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Luo, X. et al. Complete biosynthesis of cannabinoids and their unnatural analogues in yeast. Nature 567, 123–126 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Arnold, F. H. Directed evolution: bringing new chemistry to life. Angew Chem. Int. Ed. Engl. 57, 4143–4148 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Bowie, J. U. et al. Synthetic biochemistry: the bio-inspired cell-free approach to commodity chemical production. Trends Biotechnol. 38, 766–778 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Altman, M. D. et al. Cyclic di-nucleotide compounds as STING agonists. Patent WO2017027646A1 (2016).

  • Walsh, C. T., Tu, B. P. & Tang, Y. Eight kinetically stable but thermodynamically activated molecules that power cell metabolism. Chem. Rev. 118, 1460–1494 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Cross, R. STING fever is sweeping through the cancer immunotherapy world. Chem. Eng. News 96, 24–26 (2018).


    Google Scholar
     

  • Burdette, D. L. et al. STING is a direct innate immune sensor of cyclic di-GMP. Nature 478, 515–518 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Sun, L., Wu, J., Du, F., Chen, X. & Chen, Z. J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786–791 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Knouse, K. W. et al. Unlocking P(V): reagents for chiral phosphorothioate synthesis. Science 361, 1234–1238 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Lioux, T. et al. Design, synthesis, and biological evaluation of novel cyclic adenosine-inosine monophosphate (cAIMP) analogs that activate stimulator of interferon genes (STING). J. Med. Chem. 59, 10253–10267 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Featherston, A. L. et al. Catalytic asymmetric and stereodivergent oligonucleoside synthesis. Science 371, 702–707 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Yan, H., Wang, X., KuoLee, R. & Chen, W. Synthesis and immunostimulatory properties of the phosphorothioate analogues of cdiGMP. Bioorg. Med. Chem. Lett. 18, 5631–5634 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Gaffney, B. L., Veliath, E., Zhao, J. & Jones, R. A. One-flask syntheses of c-di-GMP and the [Rp,Rp] and [Rp,Sp] thiophosphate analogues. Org. Lett. 12, 3269–3271 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, X. et al. Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol. Cell 51, 226–235 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Gao, P. et al. Structure-function analysis of STING activation by c[G(2′,5′)pA(3′,5′)p] and targeting by antiviral DMXAA. Cell 154, 748–762 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Li, L. et al. Hydrolysis of 2’3′-cGAMP by ENPP1 and design of nonhydrolyzable analogs. Nat. Chem. Biol. 10, 1043–1048 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Ablasser, A. et al. cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature 498, 380–384 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Diner, E. J. et al. The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. Cell. Rep. 3, 1355–1361 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Gao, P. et al. Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell 153, 1094–1107 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Eckstein, F. Nucleoside phosphorothioates. Annu. Rev. Biochem. 54, 367–402 (1985).

    CAS 
    Article 

    Google Scholar
     

  • Du, M. & Chen, Z. J. DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science 361, 704–709 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Thillier, V., Sallamand, C. C. B., Vasseur, J. J. & Debart, F. Solid‐phase synthesis of oligonucleotide 5′‐(α‐P‐Thio)triphosphates and 5′‐(α‐P‐Thio)(β,γ‐methylene)triphosphates. Eur. J. Org. Chem. 2015, 302–308 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Ludwig, J. & Eckstein, F. Rapid and efficient synthesis of nucleoside 5′-O-(1-thiotriphosphates), 5′-triphosphates, and 2′,3′-cyclophosphorothioates using 2-chloro-4H-1,3,2,-benzodioxaphosphorin-4-one. J. Org. Chem. 54, 631–635 (1989).

    CAS 
    Article 

    Google Scholar
     

  • Moran, J. R. & Whitesides, G. M. A practical enzymatic synthesis of (Sp)-adenosine 5′-O-(1-thiotriphosphate) ((Sp)-ATP-α-S)). J. Org. Chem. 49, 1984 (1984).

    Article 

    Google Scholar
     

  • Jaffe, E. K. & Cohn, M. 31P nuclear magnetic resonance spectra of the thiophosphate analogues of adenine nucleotides; effects of pH and Mg2+ binding. Biochemistry 17, 652–657 (1978).

    CAS 
    Article 

    Google Scholar
     

  • Rex Sheu, K. F. & Frey, P. A. Enzymatic and 32P nuclear magnetic resonance study of adenylate kinase-catalyzed stereospecific phosphorylation of adenosine 5′-phosphorothioate. J. Biol. Chem. 252, 4445–4448 (1977).

    CAS 
    Article 

    Google Scholar
     

  • Sandoval, B. A. & Hyster, T. K. Emerging strategies for expanding the toolbox of enzymes in biocatalysis. Curr. Opin. Chem. Biol. 55, 45–51 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Ren, X. & Fasan, R. Engineered and artificial metalloenzymes for selective C–H functionalization. Curr. Opin. Green Sustain. Chem. 31, 100494 (2021).

    Article 

    Google Scholar
     

  • Brandenberg, O. F., Fasan, R. & Arnold, F. H. Exploiting and engineering hemoproteins for abiological carbene and nitrene transfer reactions. Curr. Opin. Biotechnol. 47, 102–111 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Qu, G., Li, A., Acevedo-Rocha, C. G., Sun, Z. & Reetz, M. T. The crucial role of methodology development in directed evolution of selective enzymes. Angew Chem. Int. Ed. Engl. 59, 13204–13231 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Lim, J. & Kim, H. Y. Novel applications of biocatalysis to stereochemistry determination of 2′3′-cGAMP bisphosphorothioate (2′3′-cGSASMP). ACS Omega 5, 14173–14179 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Crans, D. C. & Whitesides, G. M. A convenient synthesis of disodium acetyl phosphate for use in in situ ATP cofactor regeneration. J. Org. Chem. 48, 3130–3132 (1983).

  • Gottlieb, H. E., Kotlyar, V. & Nudelman, A. J. NMR chemical shifts of common laboratory solvents as trace impurities. J. Org. Chem. 62, 7512–7515 (1997).

    CAS 
    Article 

    Google Scholar
     

  • Fulmer, G. R. et al. NMR chemical shifts of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. Organometallics 29, 2176–2179 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Pan, B. S. et al. An orally available non-nucleotide STING agonist with antitumor activity. Science 369, eaba6098 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Studier, F. W. Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005).

    CAS 
    Article 

    Google Scholar
     

  • Abele, U. & Schulz, G. E. High-resolution structures of adenylate kinase from yeast ligated with inhibitor Ap5A, showing the pathway of phosphoryl transfer. Protein Sci. 4, 1262–1271 (1995).

    CAS 
    Article 

    Google Scholar
     

  • Sekulic, N., Shuvalova, L., Spangenberg, O., Konrad, M. & Lavie, A. Structural characterization of the closed conformation of mouse guanylate kinase. J. Biol. Chem. 277, 30236–30243 (2002).

    CAS 
    Article 

    Google Scholar
     



  • Source link