• Rivera-Thorsen, T. E. et al. The Sunburst Arc: direct Lyman α escape observed in the brightest known lensed galaxy. Astron. Astrophys. 608, L4 (2017).

    ADS 

    Google Scholar
     

  • Johnson, T. L. et al. Star formation at z = 2.481 in the lensed galaxy SDSS J1110+6459: star formation down to 30 pm scales. Astrophys. J. Lett. 843, L21 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kelly, P. L. et al. Extreme magnification of an individual star at redshift 1.5 by a galaxy-cluster lens. Nat. Astron. 2, 334–342 (2018).

    ADS 

    Google Scholar
     

  • Rodney, S. A. et al. Two peculiar fast transients in a strongly lensed host galaxy. Nat. Astron. 2, 324–333 (2018).

    ADS 

    Google Scholar
     

  • Chen, W. et al. Searching for highly magnified stars at cosmological distances: discovery of a redshift 0.94 supergiant in archival images of the galaxy cluster MACS J0416.1-2403. Astrophys. J. 881, 8 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Kaurov, A. A., Dai, L., Venumadhav, T., Miralda-Escudé, J. & Frye, B. Highly magnified stars in lensing clusters: new evidence in a galaxy lensed by MACS J0416.1-2403. Astrophys. J. 881, 58 (2019).


    Google Scholar
     

  • Coe, D. et al. RELICS: Reionization Lensing Cluster Survey. Astrophys. J. 884, 85 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Salmon, B. et al. RELICS: The Reionization Lensing Cluster Survey and the brightest high-z galaxies. Astrophys. J. 889, 189 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Rivera-Thorsen, T. E. et al. Gravitational lensing reveals ionizing ultraviolet photons escaping from a distant galaxy. Science 366, 738–741 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zitrin, A. et al. Hubble Space Telescope combined strong and weak lensing analysis of the CLASH sample: mass and magnification models and systematic uncertainties. Astrophys. J. 801, 44 (2015).

    ADS 

    Google Scholar
     

  • Zitrin, A. et al. New multiply-lensed galaxies identified in ACS/NIC3 observations of Cl0024+1654 using an improved mass model. Mon. Not. R. Astron. Soc. 395, 1319–1332 (2009).


    Google Scholar
     

  • Broadhurst, T. et al. Strong-lensing analysis of A1689 from Deep Advanced Camera images. Astrophys. J. 621, 53–88 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • Jullo, E. & Kneib, J. P. Multiscale cluster lens mass mapping – I. Strong lensing modelling. Mon. Not. R. Astron. Soc. 395, 1319–1332 (2009).

    ADS 

    Google Scholar
     

  • Jullo, E. et al. A Bayesian approach to strong lensing modelling of galaxy clusters. New J. Phys. 9, 447 (2007).

    ADS 

    Google Scholar
     

  • Oguri, M. The mass distribution of SDSS J1004+4112 revisited. Publ. Astron. Soc. Jpn 62, 1017–1024 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • Diego, J. M., Tegmark, M., Protopapas, P. & Sandvik, H. B. Combined reconstruction of weak and strong lensing data with WSLAP. Mon. Mot. R. Astron. Soc. 375, 958–970 (2007).

    ADS 

    Google Scholar
     

  • Diego, J. M., Protopapas, P., Sandvik, H. B. & Tegmark, M. Non-parametric inversion of strong lensing systems. Mon. Not. R. Astron. Soc. 360, 477–491 (2005).

    ADS 

    Google Scholar
     

  • Diego, J. M. The Universe at extreme magnification. Astron. Astrophys. 625, A84 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Meneghetti, M. et al. The Frontier Fields lens modelling comparison project. Mon. Mot. R. Astron. Soc. 472, 3177–3216 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Venumadhav, T., Dai, L. & Miralda-Escudé, J. Microlensing of extremely magnified stars near caustics of galaxy clusters. Astrophys. J. 850, 49 (2017).

    ADS 

    Google Scholar
     

  • Diego, J. M. et al. Dark matter under the microscope: constraining compact dark matter with caustic crossing events. Astrophys. J. 857, 25 (2018).

    ADS 

    Google Scholar
     

  • Dai, L. Statistical microlensing towards magnified high-redshift star clusters. Mon. Mot. R. Astron. Soc. 501, 5538–5553 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Portegies Zwart, S. F., McMillan, S. L. W. & Gieles, M. Young massive star clusters. Annu. Rev. Astron. Astrophys. 48, 431–493 (2010).

    ADS 

    Google Scholar
     

  • Figer, D. F., McLean, I. S. & Morris, M. Massive stars in the quintuplet cluster. Astrophys. J. 514, 202–220 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • Bouwens, R. J. et al. Very low-luminosity galaxies in the early universe have observed sizes similar to single star cluster complexes. Preprint at https://arxiv.org/abs/1711.02090 (2017).

  • Vanzella, E. et al. Massive star cluster formation under the microscope at z = 6. Mon. Not. R. Astron. Soc. 483, 3618–3635 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Behrendt, M., Schartmann, M. & Burkert, A. The possible hierarchical scales of observed clumps in high-redshift disc galaxies. Mon. Not. R. Astron. Soc. 488, 306–323 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Sana, H. et al. Binary interaction dominates the evolution of massive stars. Science 337, 444–446 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sana, H. et al. Southern massive stars at high angular resolution: observational campaign and companion detection. Astrophys. J. Suppl. Ser. 215, 15 (2014).

    ADS 

    Google Scholar
     

  • Moe, M. & Di Stefano, R. Mind your Ps and Qs: the interrelation between period (P) and mass-ratio (Q) distributions of binary stars. Astrophys. J. Suppl. Ser. 230, 15 (2017).

    ADS 

    Google Scholar
     

  • Szécsi, D., Agrawal, P., Wünsch, R. & Langer, N. Bonn Optimized Stellar Tracks (BoOST). Simulated populations of massive and very massive stars for astrophysical applications. Astron. Astrophys. 628, A125 (2022).

  • Shimizu, I., Inoue, A. K., Okamoto, T. & Yoshida, N. Nebular line emission from z > 7 galaxies in a cosmological simulation: rest-frame UV to optical lines. Mon. Not. R. Astron. Soc. 461, 3563–3575 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • Wen, Z. L., Han, J. L. & Liu, F. S. A catalog of 132,684 clusters of galaxies identified from Sloan Digital Sky Survey III. Astrophys. J. Suppl. Ser. 199, 34 (2012).

    ADS 

    Google Scholar
     

  • Wen, Z. L. & Han, J. L. Calibration of the optical mass proxy for clusters of galaxies and an update of the WHL12 cluster catalog. Astrophys. J. 807, 178 (2015).

    ADS 

    Google Scholar
     

  • Alam, S. et al. The eleventh and twelfth data releases of the Sloan Digital Sky Survey: final data from SDSS-III. Astropys. J. Suppl. Ser. 219, 12 (2015).

    ADS 

    Google Scholar
     

  • Planck Collaboration. Planck 2015 results: XXVII. The second Planck catalogue of Sunyaev–Zeldovich sources. Astron. Astrophys. 594, A27 (2016).


    Google Scholar
     

  • Sunyaev, R. A. & Zeldovich, Y. B. Small-scale fluctuations of relic radiation. Astrophys. Space Sci. 7, 3–19 (1970).

    ADS 

    Google Scholar
     

  • Strait, V. et al. RELICS: properties of z ≥ 5.5 galaxies inferred from Spitzer and Hubble imaging, including a candidate z ~ 6.8 strong [O iii] emitter. Astrophys. J. 910, 135 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Bertin, E. & Arnouts, S. SExtractor: software for source extraction. Astron. Astrophys. Suppl. Ser. 117, 393–404 (1996).

    ADS 

    Google Scholar
     

  • Beintez, N. Bayesian photometric redshift estimation. Astrophys. J. 536, 571–583 (2000).

    ADS 

    Google Scholar
     

  • Coe, D. et al. Galaxies in the Hubble Ultra Deep Field. I. Detection, multiband photometry, photometric redshifts, and morphology. Astron. J. 132, 926–959 (2006).

    ADS 

    Google Scholar
     

  • Carnall, A. C., McLure, R. J., Dunlop, J. S. & Davé, R. Inferring the star formation histories of massive quiescent galaxies with BAGPIPES: evidence for multiple quenching mechanisms. Mon. Not. R. Astron. Soc. 480, 4379–4401 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Eldridge, J. J. et al. Binary Population and Spectral Synthesis version 2.1: construction, observational verification, and new results. Publ. Astron. Soc. Aust. 34, e058 (2017).

    ADS 

    Google Scholar
     

  • Ferland, G. J. et al. The 2017 release of Cloudy. Rev. Mex. Astron. Astr. 53, 385–438 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Salpeter, E. E. The luminosity function and stellar evolution. Astrophys. J. 121, 161–167 (1955).

    ADS 

    Google Scholar
     

  • Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682–695 (2000).

    ADS 

    Google Scholar
     

  • Ellis, R. S. et al. The homogeneity of spheroidal populations in distant clusters. Astrophys. J. 483, 582–596 (1997).

    ADS 

    Google Scholar
     

  • Stanford, S. A., Eisenhardt, P. R. & Dickinson, M. The evolution of early-type galaxies in distant clusters. Astrophys. J. 492, 461–479 (1998).

    ADS 

    Google Scholar
     

  • Hastings, W. K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109 (1970).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Limousin, M., Kneib, J.-P. & Natarajan, P. Constraining the mass distribution of galaxies using galaxy–galaxy lensing in clusters and in the field. Mon. Not. R. Astron. Soc. 356, 309–322 (2005).

    ADS 

    Google Scholar
     

  • Eliasdóttir, Á. et al. Where is the matter in the Merging Cluster Abell 2218? Preprint at https://arxiv.org/abs/0710.5636 (2007).

  • Navarro, J. F., Frenk, C. S. & White, S. D. M. The structure of cold dark matter halos. Astrophys. J. 462, 563–575 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • Johnson, T. L. et al. Star formation at z = 2.481 in the lensed galaxy SDSS J1110+6459. I. Lens modeling and source reconstruction. Astrophys. J. 843, 78 (2017).

    ADS 

    Google Scholar
     

  • Dai, L. & Pascale, M. New approximation of magnification statistics for random microlensing of magnified sources. Preprint at https://arxiv.org/abs/2104.12009 (2021).

  • Jiménez-Teja, Y. et al. RELICS: ICL analysis of the z = 0.566 merging cluster WHL J013719.8–08284. Astrophys. J. 922, 268 (2021).

    ADS 

    Google Scholar
     

  • Kriek, M. et al. An ultra-deep near-infrared spectrum of a compact quiescent galaxy at z = 2.2. Astrophys. J. 700, 221–231 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Bruzual, G. & Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc. 344, 1000–1028 (2003).

    ADS 

    Google Scholar
     

  • Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pacif. 115, 763–795 (2003).

    ADS 

    Google Scholar
     

  • Spera, M., Mapelli, M. & Bressan, A. The mass spectrum of compact remnants from the PARSEC stellar evolution tracks. Mon. Not. R. Astron. Soc. 451, 4086–4103 (2015).

  • Oguri, M., Diego, J. M., Kaiser, N., Kelly, P. L. & Broadhurst, T. Understanding caustic crossings in giant arcs: characteristic scales, event rates, and constraints on compact dark matter. Phys. Rev. D 97, 023518 (2018).

    ADS 

    Google Scholar
     

  • Windhorst, R. A. et al. On the observability of individual population III stars and their stellar-mass black hole accretion disks through cluster caustic transits. Astrophys. J. Suppl. Ser. 234, 41 (2018).

    ADS 

    Google Scholar
     

  • Lejeune, T. H., Cuisinier, F. & Buser, R. Standard stellar library for evolutionary synthesis. I. Calibration of theoretical spectra. Astron. Astrophys. Suppl. Ser. 125, 229–246 (1997).

    ADS 

    Google Scholar
     

  • Calzetti, D. et al. The brightest young star clusters in NGC 5253. Astrophys. J. 811, 75 (2015).

    ADS 

    Google Scholar
     

  • Sanyal, D., Grassitelli, L., Langer, N. & Bestenlehner, J. M. Massive main-sequence stars evolving at the Eddington limit. Astron. Astrophys. 580, A20 (2015).

    ADS 

    Google Scholar
     

  • El-Badry, K., Rix, H.-W., Tian, H., Duchêne, G. & Moe, M. Discovery of an equal-mass ‘twin’ binary population reaching 1000+ au separations. Mon. Not. R. Astron. Soc. 489, 5822–5857 (2019).

    ADS 

    Google Scholar
     

  • Leitherer, C. et al. Starburst99: synthesis models for galaxies with active star formation. Astrophys. J. Suppl. Ser. 123, 3–40 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • Kroupa, P. On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 322, 231–246 (2001).

    ADS 

    Google Scholar
     

  • da Silva, R. L., Fumagalli, M. & Krumholz, M. SLUG—Stochastically Lighting Up Galaxies. I. Methods and validating tests. Astrophys. J. 745, 145 (2012).

    ADS 

    Google Scholar
     

  • Krumholz, M. R., Fumagalli, M., da Silva, R. L., Rendahl, T. & Parra, J. SLUG – stochastically lighting up galaxies – III. A suite of tools for simulated photometry, spectroscopy, and Bayesian inference with stochastic stellar populations. Mon. Not. R. Astron. Soc. 452, 1447–1467 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • Madau, P. & Dickinson, M. Cosmic star-formation history. Annu. Rev. Astron. Astrophys. 52, 415–486 (2014).

    ADS 

    Google Scholar
     

  • Kehrig, C. et al. The extended He ii λ4686 emission in the extremely metal-poor galaxy SBS 0335 – 052E seen with MUSE. Mon. Not. R. Astron. Soc. 480, 1081–1095 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Sarmento, R., Scannapieco, E. & Cohen, S. Following the cosmic evolution of pristine gas. II. The search for pop III–bright galaxies. Astrophys. J. 854, 75 (2018).

    ADS 

    Google Scholar
     

  • Sarmento, R., Scannapieco, E. & Côté, B. Following the cosmic evolution of pristine gas. III. The observational consequences of the unknown properties of population III stars. Astrophys. J. 871, 206 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Trenti, M., Stiavelli, M. & Shull, J. M. Metal-free gas supply at the edge of reionization: late-epoch population III star formation. Astrophys. J. 700, 1672–1679 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Vanzella, E. et al. Candidate population III stellar complex at z = 6.629 in the MUSE Deep Lensed Field. Mon. Not. R. Astron. Soc. 494, L81–L85 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Abbott, R. et al. GW190521: a binary black hole merger with a total mass of 150M. Phys. Rev. Lett. 125, 101102 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farrell, E. et al. Is GW190521 the merger of black holes from the first stellar generations? Mon. Not. R. Astron. Soc. Lett. 502, L40–L44 (2020).

    ADS 

    Google Scholar
     

  • Kinugawa, T., Nakamura, T. & Nakano, H. Formation of binary black holes similar to GW190521 with a total mass of ~150M from population III binary star evolution. Mon. Not. R. Astron. Soc. Lett. 501, L49–L53 (2020).

    ADS 

    Google Scholar
     

  • Zdziarski, A. A. & Gierliński, M. Radiative processes, spectral states and variability of black-hole binaries. Prog. Theor. Phys. Suppl. 155, 99–119 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • Holwerda, B. W. et al. Milky Way red dwarfs in the BoRG Survey; galactic scale-height and the distribution of dwarf stars in WFC3 imaging. Astrophys. J. 788, 77 (2014).

    ADS 

    Google Scholar
     

  • Burgasser, A. J. & Splat Development Team. The SpeX Prism Library Analysis Toolkit (SPLAT): a data curation model. In Proc. Intl Workshop on Stellar Spectral Libraries (IWSSL 2017) (eds Coelho, P. et al.) 7–12 (Astronomical Society of India, 2017).

  • Hainline, K. N., Shapley, A. E., Greene, J. E. & Steidel, C. C. The rest-frame ultraviolet spectra of UV-selected active galactic nuclei at z ~ 2–3. Astrophys. J. 733, 31 (2011).

    ADS 

    Google Scholar
     



  • Source link

    Invest In Films & Earn Yearly

    Invest in films & earn yearly

    initial deposit returned + 25% min on top

    + 50% return on royalties for life

    This will close in 20 seconds