• Abramson, J. S. et al. Transcend NHL 001: immunotherapy with the CD19-directed CAR T-cell product JCAR017 results in high complete response rates in relapsed or refractory B-cell non-Hodgkin lymphoma. Blood 128, 4192–4192 (2016).


    Google Scholar
     

  • Shifrut, E. et al. Genome-wide CRISPR screens in primary human T cells reveal key regulators of immune function. Cell 175, 1958–1971 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong, M. B. et al. Systematic immunotherapy target discovery using genome-scale in vivo CRISPR screens in CD8 T cells. Cell 178, 1189–1204 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Z. et al. In vivo CD8+ T cell CRISPR screening reveals control by Fli1 in infection and cancer. Cell 184, 1262–1280 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kabelitz, D., Serrano, R., Kouakanou, L., Peters, C. & Kalyan, S. Cancer immunotherapy with γδ T cells: many paths ahead of us. Cell. Mol. Immunol. 17, 925–939 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Munshi, N. C. et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N. Engl. J. Med. 384, 705–716 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Fraietta, J. A. et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat. Med. 24, 563–571 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singer, M. et al. A distinct gene module for dysfunction uncoupled from activation in tumor-infiltrating T cells. Cell 166, 1500–1511 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gurusamy, D. et al. Multi-phenotype CRISPR–Cas9 screen identifies p38 kinase as a target for adoptive immunotherapies. Cancer Cell 37, 818–833 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Legut, M., Dolton, G., Mian, A. A., Ottmann, O. G. & Sewell, A. K. CRISPR-mediated TCR replacement generates superior anticancer transgenic T cells. Blood 131, 311–322 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren, J. et al. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin. Cancer Res. 23, 2255–2266 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Wagner, D. L. et al. High prevalence of Streptococcus pyogenes Cas9-reactive T cells within the adult human population. Nat. Med. 25, 242–248 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Wu, X. et al. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat. Biotechnol. 32, 670–676 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sack, L. M. et al. Profound tissue specificity in proliferation control underlies cancer drivers and aneuploidy patterns. Cell 173, 499–514 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan, J. et al. CTLA-4 blockade enhances polyfunctional NY-ESO-1 specific T cell responses in metastatic melanoma patients with clinical benefit. Proc. Natl Acad. Sci. USA 105, 20410–20415 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sommermeyer, D. et al. Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia 30, 492–500 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Fischer, A. M., Katayama, C. D., Pagès, G., Pouysségur, J. & Hedrick, S. M. The role of Erk1 and Erk2 in multiple stages of T cell development. Immunity 23, 431–443 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Lipp, A. M. et al. Lck mediates signal transmission from CD59 to the TCR/CD3 pathway in Jurkat T cells. PLoS One 9, e85934 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, X. et al. Interleukin-23 engineering improves CAR T cell function in solid tumors. Nat. Biotechnol. 38, 448–459 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seo, H. et al. BATF and IRF4 cooperate to counter exhaustion in tumor-infiltrating CAR T cells. Nat. Immunol. 22, 983–995 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jamali, A. et al. Highly efficient and selective CAR-gene transfer using CD4- and CD8-targeted lentiviral vectors. Mol. Ther. Methods Clin. Dev. 13, 371–379 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mimitou, E. P. et al. Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells. Nat. Methods 16, 409–412 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gil-Yarom, N. et al. CD74 is a novel transcription regulator. Proc. Natl Acad. Sci. USA 114, 562–567 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Ataide, M. A. et al. BATF3 programs CD8+ T cell memory. Nat. Immunol. 21, 1397–1407 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Katagiri, T., Kameda, H., Nakano, H. & Yamazaki, S. Regulation of T cell differentiation by the AP-1 transcription factor JunB. Immunol. Med. 44, 197–203 (2021).

  • Zhao, X., Shan, Q. & Xue, H.-H. TCF1 in T cell immunity: a broadened frontier. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-021-00563-6 (2021).

  • Sudhamsu, J. et al. Dimerization of LTβR by LTα1β2 is necessary and sufficient for signal transduction. Proc. Natl Acad. Sci USA 110, 19896–19901 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, C. et al. Structurally distinct recognition motifs in lymphotoxin-β receptor and CD40 for tumor necrosis factor receptor-associated factor (TRAF)-mediated signaling. J. Biol. Chem. 278, 50523–50529 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Wu, M.-Y., Wang, P.-Y., Han, S.-H. & Hsieh, S.-L. The cytoplasmic domain of the lymphotoxin-β receptor mediates cell death in HeLa cells. J. Biol. Chem. 274, 11868–11873 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Macian, F. NFAT proteins: key regulators of T-cell development and function. Nat. Rev. Immunol. 5, 472–484 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Dejardin, E. et al. The lymphotoxin-β receptor induces different patterns of gene expression via two NF-κB pathways. Immunity 17, 525–535 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Saoulli, K. et al. CD28-independent, TRAF2-dependent costimulation of resting T cells by 4-1BB ligand. J. Exp. Med. 187, 1849–1862 (1998).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thommen, D. S. & Schumacher, T. N. T cell dysfunction in cancer. Cancer Cell 33, 547–562 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roth, T. L. et al. Pooled knockin targeting for genome engineering of cellular immunotherapies. Cell 181, 728–744 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • VanArsdale, T. L. et al. Lymphotoxin- receptor signaling complex: role of tumor necrosis factor receptor-associated factor 3 recruitment in cell death and activation of nuclear factor B. Proc. Natl Acad. Sci. USA 94, 2460–2465 (1997).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yılmaz, Z. B. et al. Quantitative dissection and modeling of the NF-κB p100-p105 module reveals interdependent precursor proteolysis. Cell Rep. 9, 1756–1769 (2014).

    PubMed 

    Google Scholar
     

  • Hu, B. et al. Augmentation of antitumor immunity by human and mouse CAR T cells secreting IL-18. Cell Rep. 20, 3025–3033 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yeku, O. O., Purdon, T. J., Koneru, M., Spriggs, D. & Brentjens, R. J. Armored CAR T cells enhance antitumor efficacy and overcome the tumor microenvironment. Sci. Rep. 7, 10541 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lynn, R. C. et al. c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature 576, 293–300 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmiedel, B. J. et al. Impact of genetic polymorphisms on human immune cell gene expression. Cell 175, 1701–1715 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lissina, A. et al. Protein kinase inhibitors substantially improve the physical detection of T-cells with peptide-MHC tetramers. J. Immunol. Methods 340, 11–24 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meier, J. A., Zhang, F. & Sanjana, N. E. GUIDES: sgRNA design for loss-of-function screens. Nat. Methods 14, 831–832 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liscovitch-Brauer, N. et al. Profiling the genetic determinants of chromatin accessibility with scalable single-cell CRISPR screens. Nat. Biotechnol. 39, 1270–1277 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS 

    Google Scholar
     

  • Legut, M. et al. High-throughput screens of PAM-flexible Cas9 variants for gene knockout and transcriptional modulation. Cell Rep. 30, 2859–2868 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet j. 17, 10 (2011).


    Google Scholar
     

  • Wang, B. et al. Integrative analysis of pooled CRISPR genetic screens using MAGeCKFlute. Nat. Protoc. 14, 756–780 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alexa, A. & Rahnenfuhrer, J. topGO: Enrichment Analysis for Gene Ontology R package v.2.46.0 (Bioconductor, 2021).

  • Rambaldi, D., Pece, S. & Di Fiore, P. P. flowFit: a Bioconductor package to estimate proliferation in cell-tracking dye studies. Bioinformatics 30, 2060–2065 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Wessels, H.-H. et al. Massively parallel Cas13 screens reveal principles for guide RNA design. Nat. Biotechnol. 38, 722–727 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guedan, S., Calderon, H., Posey, A. D. & Maus, M. V. Engineering and design of chimeric antigen receptors. Mol. Ther. Methods Clin. Dev. 12, 145–156 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Melsted, P. et al. Modular, efficient and constant-memory single-cell RNA-seq preprocessing. Nat. Biotechnol. 39, 813–818 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Melsted, P., Ntranos, V. & Pachter, L. The barcode, UMI, set format and BUStools. Bioinformatics 35, 4472–4473 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stoeckius, M. et al. Cell Hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. Genome Biol. 19, 224 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McGinnis, C. S. et al. MULTI-seq: sample multiplexing for single-cell RNA sequencing using lipid-tagged indices. Nat. Methods 16, 619–626 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chung, N. C. & Storey, J. D. Statistical significance of variables driving systematic variation in high-dimensional data. Bioinformatics 31, 545–554 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 88–44 (2018).


    Google Scholar
     

  • Storey, J. D. & Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl Acad. Sci. USA 100, 9440–9445 (2003).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Pallares, L. F., Picard, S. & Ayroles, J. F. TM3’seq: a tagmentation-mediated 3′ sequencing approach for improving scalability of RNAseq experiments. G3 10, 143–150 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Yates, A. D. et al. Ensembl 2020. Nucleic Acids Res. 48, D682–D688 (2019).

    PubMed Central 

    Google Scholar
     

  • Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res. 4, 1521 (2015).

    PubMed 

    Google Scholar
     

  • Schneider, V. A. et al. Evaluation of GRCh38 and de novo haploid genome assemblies demonstrates the enduring quality of the reference assembly. Genome Res. 27, 849–864 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Broad Institute. Picard Toolkit https://broadinstitute.github.io/picard/ (Broad Institute, GitHub Repository, 2019).

  • Zhang, Y. et al. Model-based analysis of ChIP–seq (MACS). Genome Biol. 9, R137 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schep, A. N., Wu, B., Buenrostro, J. D. & Greenleaf, W. J. chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data. Nat. Methods 14, 975–978 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramírez, F., Dündar, F., Diehl, S., Grüning, B. A. & Manke, T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 42, W187–W191 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lopez-Delisle, L. et al. pyGenomeTracks: reproducible plots for multivariate genomic datasets. Bioinformatics 37, 422–423 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).


    Google Scholar
     

  • Ding, J. et al. Systematic comparative analysis of single cell and single-nucleus RNA-sequencing methods. Nat. Biotechnol. 38, 737–746 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link