• Pearson, B. J. & Doe, C. Q. Specification of temporal identity in the developing nervous system. Annu. Rev. Cell Dev. Biol. 20, 619–647 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sato, M., Yasugi, T. & Trush, O. Temporal patterning of neurogenesis and neural wiring in the fly visual system. Neurosci. Res. 138, 49–58 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doe, C. Q. Temporal patterning in the Drosophila CNS. Annu. Rev. Cell Dev. Biol. 33, 219–240 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rossi, A. M., Fernandes, V. M. & Desplan, C. Timing temporal transitions during brain development. Curr. Opin. Neurobiol. 42, 84–92 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holguera, I. & Desplan, C. Neuronal specification in space and time. Science 362, 176–180 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Azevedo, F. A. C. et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J. Comp. Neurol. 513, 532–541 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oberst, P., Agirman, G. & Jabaudon, D. Principles of progenitor temporal patterning in the developing invertebrate and vertebrate nervous system. Curr. Opin. Neurobiol. 56, 185–193 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brody, T. & Odenwald, W. F. Programmed transformations in neuroblast gene expression during Drosophila CNS lineage development. Dev. Biol. 226, 34–44 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pearson, B. J. & Doe, C. Q. Regulation of neuroblast competence in Drosophila. Nature 425, 624–628 (2003).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Isshiki, T., Pearson, B., Holbrook, S. & Doe, C. Q. Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. Cell 106, 511–521 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, X. et al. Temporal patterning of Drosophila medulla neuroblasts controls neural fates. Nature 498, 456–462 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elliott, J., Jolicoeur, C., Ramamurthy, V. & Cayouette, M. Ikaros confers early temporal competence to mouse retinal progenitor cells. Neuron 60, 26–39 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mattar, P., Ericson, J., Blackshaw, S. & Cayouette, M. A conserved regulatory logic controls temporal identity in mouse neural progenitors. Neuron 85, 497–504 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Konstantinides, N., Rossi, A. M. & Desplan, C. Common temporal identity factors regulate neuronal diversity in fly ventral nerve cord and mouse retina. Neuron 85, 447–449 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Javed, A. et al. Pou2f1 and Pou2f2 cooperate to control the timing of cone photoreceptor production in the developing mouse retina. Development 147, dev188730 (2020).

    CAS 

    Google Scholar
     

  • Alsiö, J. M. et al. Ikaros promotes early-born neuronal fates in the cerebral cortex. Proc. Natl Acad. Sci. USA 110, E716–E725 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fischbach, K. F. & Dittrich, A. P. The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell Tissue Res. 258, 441–445 (1989).


    Google Scholar
     

  • Konstantinides, N. et al. Phenotypic convergence: distinct transcription factors regulate common terminal features. Cell 174, 622–635 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Özel, M. N. et al. Neuronal diversity and convergence in a visual system developmental atlas. Nature 589, 88–95 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurmangaliyev, Y. Z., Yoo, J., Valdes-Aleman, J., Sanfilippo, P. & Zipursky, S. L. Transcriptional programs of circuit assembly in the Drosophila visual system. Neuron 108, 1045–1057 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nériec, N. & Desplan, C. From the eye to the brain: development of the Drosophila visual system. Curr. Top. Dev. Biol. 116, 247–271 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ngo, K. T., Andrade, I. & Hartenstein, V. Spatio-temporal pattern of neuronal differentiation in the Drosophila visual system: a user’s guide to the dynamic morphology of the developing optic lobe. Dev. Biol. 428, 1–24 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suzuki, T., Kaido, M., Takayama, R. & Sato, M. A temporal mechanism that produces neuronal diversity in the Drosophila visual center. Dev. Biol. 380, 12–24 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold approximation and projection for dimension reduction. Preprint at https://arxiv.org/abs/1802.03426 (2018).

  • Erclik, T. et al. Integration of temporal and spatial patterning generates neural diversity. Nature 541, 365–370 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Erclik, T., Hartenstein, V., McInnes, R. R. & Lipshitz, H. D. Eye evolution at high resolution: the neuron as a unit of homology. Dev. Biol. 332, 70–79 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hasegawa, E. et al. Concentric zones, cell migration and neuronal circuits in the Drosophila visual center. Development 138, 983–993 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mark, B. et al. A developmental framework linking neurogenesis and circuit formation in the Drosophila CNS. eLife 10, e67510 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noctor, S. C., Martínez-Cerdeño, V., Ivic, L. & Kriegstein, A. R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat. Neurosci. 7, 136–144 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sagner, A. & Briscoe, J. Establishing neuronal diversity in the spinal cord: a time and a place. Development 146, dev182154 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sagner, A. et al. A shared transcriptional code orchestrates temporal patterning of the central nervous system. PLoS Biol. 19, e3001450 (2021).

  • Telley, L. et al. Temporal patterning of apical progenitors and their daughter neurons in the developing neocortex. Science 364, eaav2522 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clark, B. S. et al. Single-cell RNA-seq analysis of retinal development identifies NFI factors as regulating mitotic exit and late-born cell specification. Neuron 102, 1111–1126 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cepko, C. Intrinsically different retinal progenitor cells produce specific types of progeny. Nat. Rev. Neurosci. 15, 615–627 (2014).

    CAS 

    Google Scholar
     

  • Abdusselamoglu, M. D., Eroglu, E., Burkard, T. R. & Knoblich, J. A. The transcription factor odd-paired regulates temporal identity in transit-amplifying neural progenitors via an incoherent feed-forward loop. eLife 8, e46566 (2019).

  • Chen, Z. et al. A unique class of neural progenitors in the Drosophila optic lobe generates both migrating neurons and glia. Cell Rep. 15, 774–786 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferreira, A. A. G., Sieriebriennikov, B. & Whitbeck, H. HCR RNA-FISH protocol for the whole-mount brains of Drosophila and other insects. Protocols.io, https://doi.org/10.17504/protocols.io.bzh5p386 (2021).

  • Davis, F. P. et al. A genetic, genomic, and computational resource for exploring neural circuit function. eLife 9, e50901 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naidu, V. G. et al. Temporal progression of Drosophila medulla neuroblasts generates the transcription factor combination to control T1 neuron morphogenesis. Dev. Biol. 464, 35–44 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stoeckius, M. et al. Cell hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. Genome Biol. 19, 224 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Southall, T. et al. Cell-type-specific profiling of gene expression and chromatin binding without cell isolation: assaying RNA pol II occupancy in neural stem cells. Dev. Cell 26, 101–112 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gold, K. S. & Brand, A. H. Optix defines a neuroepithelial compartment in the optic lobe of the Drosophila brain. Neural Dev. 9, 18 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guillermin, O., Perruchoud, B., Sprecher, S. G. & Egger, B. Characterization of tailless functions during Drosophila optic lobe formation. Dev. Biol. 405, 202–213 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chotard, C., Leung, W. & Salecker, I. glial cells missing and gcm2 cell autonomously regulate both glial and neuronal development in the visual system of Drosophila. Neuron 48, 237–251 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shiau, F., Ruzycki, P. A. & Clark, B. S. A single-cell guide to retinal development: cell fate decisions of multipotent retinal progenitors in scRNA-seq. Dev. Biol. 478, 41–58 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link